\documentclass[11pt]{scrartcl} \usepackage[headheight=1pt, includeheadfoot, headsep=.7cm, top=1.5cm, bottom=1.3cm, left=2cm, right=2cm]{geometry} \usepackage{mathtools} \usepackage{amsmath,amsthm, amscd, amssymb, amsfonts} \usepackage[english]{babel} \usepackage{fancyhdr} \usepackage{enumitem}\setlist{itemsep=0.5em} \usepackage{multicol} \usepackage{multienum} \usepackage{euler} \usepackage[OT1]{eulervm} \renewcommand{\rmdefault}{pplx} \usepackage{mathabx} %% header, footer definitions \pagestyle{fancy} \fancyhead[L]{Math 441} \fancyhead[C]{Homework 6} \fancyhead[R]{Due on August 7} %% environments % theorem style \newtheorem{theorem}{Theorem} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{claim}[theorem]{Claim} \newtheorem{defn}[theorem]{Definition} % definition style \theoremstyle{definition} \newtheorem{problem}{Problem} % custom solution environment \newenvironment{solution}{\noindent\textbf{Solution.}}{\qed} %% custom commands \newcommand*{\R}{\mathbb{R}} % real numbers \newcommand*{\C}{\mathbb{C}} % complex numbers \newcommand*{\Q}{\mathbb{Q}} % rational numbers \newcommand*{\Z}{\mathbb{Z}} % integers \newcommand*{\N}{\mathbb{N}} % natural numbers \newcommand*{\abs}[1]{\lvert #1\rvert} % absolute values, cardinality \newcommand*{\norm}[1]{\lvert \lvert #1\rvert\rvert} %norm % operators \DeclareMathOperator*{\E}{\mathbb{E}} % expectation \DeclareMathOperator*{\Var}{\mathbf{Var}} % variance \DeclareMathOperator*{\Span}{span} % span \DeclareMathOperator{\tr}{tr} % trace \DeclareMathOperator{\rank}{rank} % rank \DeclareMathOperator{\supp}{supp} % support \DeclareMathOperator{\diam}{diam} \DeclareMathOperator{\sgn}{sgn} \begin{document} %\noindent Your name! \hfill The date %\vskip10pt \begin{problem} Let $X$ be a topological space and let $Y\subseteq X$ endowed with the induced topology. Prove that $Y$ is connected if and only if for every open sets $U$, $V$ of $X$ such that $Y\subseteq U\cup V$ and $Y\cap U \cap V= \emptyset$, we have either $Y\subseteq U$ or $Y \subseteq V$. \end{problem} \begin{problem} Determine when a set $X$ endowed with the cofinite topology is connected. Prove the resulting statement. \end{problem} \begin{problem} Prove the following: \begin{enumerate} \item A product of path-connected spaces is connected. \item If $f\colon X \to Y$ is continuous and $X$ is path-connected, then $f(X)$ is path-connected. \item Any quotient of a path-connected space is path-connected. \end{enumerate} \end{problem} \begin{problem} A subset $X \subseteq \R^n$ is called \emph{convex} if for every $x, y \in X$ and every $t \in [0, 1]$, we have $tx + (1 - t)y\in X$ (in other words, the straight line segment from $x$ to $y$ is contained in $X$). Show that convex sets are path-connected. \end{problem} \begin{problem} Prove the following: \begin{enumerate} \item For any $n>1$, the space $\R^n \setminus \{0\}$ is path connected. \item For any $r\in \R$, the space $\R \setminus \{r\}$ is not connected. \item For any $n>1$, $\R^n$ and $\R$ are not homeomorphic. \end{enumerate} \end{problem} \begin{problem} For $k\geq 1$, let $S^k$ denote the unit sphere in $\R^{k+1}$, namely \[ S^k=\{(x_1, \dots, x_{k+1}) \in \R^{k+1} \mid \norm{x}= x_1^2 + \dots + x_{k+1}^2 =1 \}.\] For every $n\geq 2$, prove that $\R^n\setminus \{0\}$ is homeomorphic to $S^{n-1}\times \R_{>0}$, where $\R_{>0}$ denotes the space of positive real numbers. You should write a formula for a homeomorphism and it's inverse, but you need not verify continuity. Deduce that the sphere $S^n$ is path-connected for any $n\geq 1$. \end{problem} \begin{problem} Let X be a topological space. \begin{enumerate} \item Define a relation on $X$ by $x \sim y$ if and only if there exists a connected subspace $Y \subseteq X$ that contains both $x$ and $y$, for every $x, y \in X$. Verify that this is an equivalence relation. The equivalence classes are called the \emph{connected components} of $X$. \item Define a relation on $X$ by $x \sim y$ if and only if there exists a path in $X$ from $x$ to $y$, for every $x, y \in X$. Verify that this is an equivalence relation. The equivalence classes are called the \emph{path components} of $X$. \end{enumerate} \end{problem} \end{document}