\documentclass[11pt]{scrartcl} \usepackage[headheight=1pt, includeheadfoot, headsep=.7cm, top=1.5cm, bottom=1.3cm, left=2cm, right=2cm]{geometry} \usepackage{mathtools} \usepackage{amsmath,amsthm, amscd, amssymb, amsfonts} \usepackage[english]{babel} \usepackage{fancyhdr} \usepackage{enumitem}\setlist{itemsep=0.5em} \usepackage{multicol} \usepackage{multienum} \usepackage{euler} \usepackage[OT1]{eulervm} \renewcommand{\rmdefault}{pplx} \usepackage{mathabx} %% header, footer definitions \pagestyle{fancy} \fancyhead[L]{Math 441} \fancyhead[C]{Homework 5} \fancyhead[R]{Due on July 31} %% environments % theorem style \newtheorem{theorem}{Theorem} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{claim}[theorem]{Claim} \newtheorem{defn}[theorem]{Definition} % definition style \theoremstyle{definition} \newtheorem{problem}{Problem} % custom solution environment \newenvironment{solution}{\noindent\textbf{Solution.}}{\qed} %% custom commands \newcommand*{\R}{\mathbb{R}} % real numbers \newcommand*{\C}{\mathbb{C}} % complex numbers \newcommand*{\Q}{\mathbb{Q}} % rational numbers \newcommand*{\Z}{\mathbb{Z}} % integers \newcommand*{\N}{\mathbb{N}} % natural numbers \newcommand*{\abs}[1]{\lvert #1\rvert} % absolute values, cardinality % operators \DeclareMathOperator*{\E}{\mathbb{E}} % expectation \DeclareMathOperator*{\Var}{\mathbf{Var}} % variance \DeclareMathOperator*{\Span}{span} % span \DeclareMathOperator{\tr}{tr} % trace \DeclareMathOperator{\rank}{rank} % rank \DeclareMathOperator{\supp}{supp} % support \DeclareMathOperator{\diam}{diam} \DeclareMathOperator{\sgn}{sgn} \begin{document} %\noindent Your name! \hfill The date %\vskip10pt \begin{problem} \begin{enumerate} \item Let $X$ be a set endowed with the cofinite topology. Prove that a sequence $(x_n)$ converges to a point $x\in X$ if and only if for every $y\ne x$, the set $\{n\in\N \mid x_n= y\}$ is finite. \item Consider $\R$ with the cofinite topology. Towards what points does the sequence $x_n=\frac{1}{n}$ converge? \end{enumerate} \end{problem} \begin{problem} Assume that $X$ is a topological spaces with subbasis $\mathcal S$, and let $x\in X$. Prove that a sequence $(x_n)$ converges to $x$ if and only if for every $S\in \mathcal S$ containing $x$, there exists some $N\in \N$ such that $x_n\in S$ for every $n\geq N$. \end{problem} \begin{problem} Let $\{X_i \mid i \in \Lambda\}$ be a collection of topological spaces, and let $(x_n)$ be a sequence of elements in the Cartesian product $\prod_{i\in \Lambda } X_i$. For each $j\in \Lambda$, let $p_j\colon \prod_{i\in \Lambda } X_i\to X_j$ denote the projection to the $j$-th coordinate. \begin{enumerate} \item Endow $\prod_{i\in \Lambda } X_i$ with the product topology. Prove that $(x_n)$ converges to a point $x\in \prod_{i\in \Lambda } X_i$ if and only if for each $j\in \Lambda$, the sequence of $j$-th coordinates $p_j(x_n)$ in converges to $p_j(x)$ in $X_j$. \item Is the statement in Part 2 true if we consider the box topology on $\prod_{i\in \Lambda } X_i$? \end{enumerate} \end{problem} \begin{problem} In this exercise we endow $\R$ and $\R^2$ with the standard topologies, and quotients with the quotient topology. For the following quotient spaces, describe a homeomorphism to a simpler, known space. \begin{enumerate} \item $\R/\sim$ where $x\sim y$ if and only if $\sgn(x)=\sgn(y)$.\footnote{The sign function $\sgn \colon \R \to \R$ is defined by $\sgn(0)=0$ and $\sgn(x)=\frac{x}{\abs{x}}$ for $x\ne 0$.} \item $\R^2/\sim$ where $(x,y)\sim (x',y')$ if and only if $x=x'$. \end{enumerate} \end{problem} \begin{problem} Let $S^n = \{x \in \R^{n+1}\mid ||x|| = 1\}$ be the unit sphere with the induced topology, where $||x||=\sqrt{x_1^2 + \dots+ x_{n+1}^2}$. Consider the quotient space $\R P^n = S^n/ \sim$ where where $x \sim y$ if and only if $y= x$ or $y=-x$. This space is called real projective space. \begin{enumerate} \item Find a continuous bijection $\R P^1\to S^1$. \item Consider the disk $D^2=\{x \in \R^2\mid ||x||\leq 1 \}$ with the induced topology from $\R^2$ (note that $D^2$ contains $S^1$ as the \emph{boundary} points). Consider on $D^2$ the equivalence relation $\sim'$ such that $x\sim' -x$ for every $x\in S^1\subseteq D^2$ (i.e. opposite boundary points of $D^2$ are identified). Find a continuous bijection $\R P^2\to D^2/\sim'$. \end{enumerate} \end{problem} \end{document}