\documentclass[11pt]{scrartcl} \usepackage[headheight=1pt, includeheadfoot, headsep=.7cm, top=1.5cm, bottom=1.3cm, left=2cm, right=2cm]{geometry} \usepackage{mathtools} \usepackage{amsmath,amsthm, amscd, amssymb, amsfonts} \usepackage[english]{babel} \usepackage{fancyhdr} \usepackage{enumitem}\setlist{itemsep=0.5em} \usepackage{multicol} \usepackage{multienum} \usepackage{euler} \usepackage[OT1]{eulervm} \renewcommand{\rmdefault}{pplx} \usepackage{mathabx} %% header, footer definitions \pagestyle{fancy} \fancyhead[L]{Math 441} \fancyhead[C]{Homework 1} \fancyhead[R]{Due on June 26} %% environments % theorem style \newtheorem{theorem}{Theorem} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{claim}[theorem]{Claim} \newtheorem{defn}[theorem]{Definition} % definition style \theoremstyle{definition} \newtheorem{problem}{Problem} % custom solution environment \newenvironment{solution}{\noindent\textbf{Solution.}}{\qed} %% custom commands \newcommand*{\R}{\mathbb{R}} % real numbers \newcommand*{\C}{\mathbb{C}} % complex numbers \newcommand*{\Q}{\mathbb{Q}} % rational numbers \newcommand*{\Z}{\mathbb{Z}} % integers \newcommand*{\N}{\mathbb{N}} % natural numbers \newcommand*{\abs}[1]{\lvert #1\rvert} % absolute values, cardinality % operators \DeclareMathOperator*{\E}{\mathbb{E}} % expectation \DeclareMathOperator*{\Var}{\mathbf{Var}} % variance \DeclareMathOperator*{\Span}{span} % span \DeclareMathOperator{\tr}{tr} % trace \DeclareMathOperator{\rank}{rank} % rank \DeclareMathOperator{\supp}{supp} % support \DeclareMathOperator{\diam}{diam} \begin{document} %\noindent Your name! \hfill The date %\vskip10pt \begin{problem} Let $X$ be a topological space and $A$ a subset of $X$. Define the \emph{interior} of $A$ (denoted $A^{\circ}$) and the \emph{closure} of $A$ (denoted $\overline A$) by \begin{align*} \mathring A&=\{x \in X \mid \text{$A$ is a neighborhood of $x$} \} \\ \overline A&=\{x \in X \mid \text{$X\setminus A$ is not a neighborhood of $x$} \} \end{align*} Prove that $\mathring A \subseteq A \subseteq \overline A$. \end{problem} %\begin{solution} %\end{solution} \begin{problem} Let $X$ be a topological space and $A$ a subset of $X$. Prove that \begin{align*} \mathring A&=\bigcup_{U \text{ open, } U \subseteq A} U, & \overline A&=\bigcap_{C \text{ closed, } C \supseteq A} C. \end{align*} \end{problem} \begin{problem}[10 points] Let $X$ be a topological space and $A$ a subset of $X$. \begin{enumerate} \item Prove that $\mathring A$ is the largest open set contained in $A$ and that $\overline A$ is the smallest closed set containing $A$. \item\label{prob2part2} Prove that $A$ is open if and only if $A=\mathring A$ if and only if $A$ is a neighborhood of each of its points. \item State and prove the closed version of the first biconditional (if and only if) of Part \ref{prob2part2}. \item For the standard topology on $\R$, compute the interior and the closure of the interval $[0,2)$. \end{enumerate} \end{problem} \begin{problem} Let $X$ be any set. Prove that the family of subsets \[\mathcal T_{\text {cf}}=\{ U \subseteq X \mid X\setminus U \text { is finite } \} \cup \{ \emptyset\}\] defines a topology on $X$. This is called the \emph{cofinite} topology. \end{problem} \begin{problem} Let $X$ be a topological space and let $A$ be a subset of $X$. Prove that the family of subsets \[\mathcal T_{A}=\{ V \subseteq A \mid \text {there exists an open set } U \subseteq X \text { such that } V=U\cap A\} \] defines a topology on $A$. This is called the \emph{induced} topology. \end{problem} \begin{problem} Munkres 13.3 \end{problem} \begin{problem} Munkres 13.4 \end{problem} \begin{problem} Munkres 13.6 \end{problem} \begin{problem} Munkres 13.8 \end{problem} \end{document}