\documentclass[11pt]{scrartcl} \usepackage[headheight=1pt, includeheadfoot, headsep=.7cm, top=1.5cm, bottom=1.3cm, left=2cm, right=2cm]{geometry} \usepackage{mathtools} \usepackage{amsmath,amsthm, amscd, amssymb, amsfonts} \usepackage[english]{babel} \usepackage{fancyhdr} \usepackage{enumitem}\setlist{itemsep=0.5em} \usepackage{multicol} \usepackage{multienum} \usepackage{euler} \usepackage[OT1]{eulervm} \renewcommand{\rmdefault}{pplx} \usepackage{mathabx} %% header, footer definitions \pagestyle{fancy} \fancyhead[L]{Math 441} \fancyhead[C]{Homework 4} \fancyhead[R]{Due on July 17} %% environments % theorem style \newtheorem{theorem}{Theorem} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{claim}[theorem]{Claim} \newtheorem{defn}[theorem]{Definition} % definition style \theoremstyle{definition} \newtheorem{problem}{Problem} % custom solution environment \newenvironment{solution}{\noindent\textbf{Solution.}}{\qed} %% custom commands \newcommand*{\R}{\mathbb{R}} % real numbers \newcommand*{\C}{\mathbb{C}} % complex numbers \newcommand*{\Q}{\mathbb{Q}} % rational numbers \newcommand*{\Z}{\mathbb{Z}} % integers \newcommand*{\N}{\mathbb{N}} % natural numbers \newcommand*{\abs}[1]{\lvert #1\rvert} % absolute values, cardinality % operators \DeclareMathOperator*{\E}{\mathbb{E}} % expectation \DeclareMathOperator*{\Var}{\mathbf{Var}} % variance \DeclareMathOperator*{\Span}{span} % span \DeclareMathOperator{\tr}{tr} % trace \DeclareMathOperator{\rank}{rank} % rank \DeclareMathOperator{\supp}{supp} % support \DeclareMathOperator{\diam}{diam} \begin{document} %\noindent Your name! \hfill The date %\vskip10pt \begin{problem} Let $(X,d)$ be a metric space and let $\mathcal T_d$ denote the metric topology induced by $d$ and let $X_d$ denote the topological space $(X,\mathcal T_d)$. \begin{enumerate} \item Prove that $d\colon X_d \times X_d \to \mathbb R_{\text{std}}$ is continuous. \item Prove that if $\mathcal T$ is another topology on $X$ such that $d\colon (X,\mathcal T) \times (X,\mathcal T) \to \mathbb R_{\text{std}}$ is continuous, then $\mathcal T_d$ is coarser than $\mathcal T$. \end{enumerate} \textbf{Note:} This proves that the metric topology $\mathcal T_d$ is the coarsest topology on $X$ such that the given distance function $d\colon X\times X \to \mathbb R$ is continuous. \end{problem} \begin{problem} Let $(X,d)$ be a metric space. Define a new metric on $X$ by \[\overline{d}(x,y)=\frac{d(x,y)}{1+d(x,y)} \text{ for all }x,y\in X.\] \begin{enumerate} \item Verify that $\overline{d}$ is a metric. \emph{Hint:} For the triangle inequality of $\overline{d}$, use that of $d$ and the fact that the map $f\colon [0,\infty) \to [ 0,1)$, where $f(x)=\frac{x}{1+x}$, is increasing and satisfies $f(a) + f(b) \geq f(a+b)$. \item Prove that $d$ and $\overline {d}$ induce the same topology. \emph{Hint:} Use Problem 1, and the fact that both $f$ and its inverse are continuous. \item For $X=\mathbb R$, show that $d$ and $\overline{d}$ are not equivalent in general. \end{enumerate} \end{problem} \begin{problem} Let $(X,d)$ be a metric space and let $Y\subseteq X$ be a subset. The restriction of $d$ to $Y$ defines a metric on $Y$ \[d_Y \colon Y\times Y \to [0,\infty), \quad d_Y(x,y)=d(x,y) \text{ for all }x,y\in Y.\] Show that the metric topology on $Y$ associated to $d_Y$ coincides with the induced topology of $Y$ as a subspace of $X$. \end{problem} \begin{problem} Let $(X, d_X)$ and $(Y, d_Y)$ be metric spaces. Assume that $f\colon X\to Y$ is a function such that \[d_Y(f(x_1), f(x_2))=d_X(x_1, x_2) \qquad \text{ for all } x_1, x_2 \in X\] \begin{enumerate} \item Prove that $f$ is injective. \item Prove that $f\colon X \to Y$ is continuous. \item Prove that $f\colon X \to f(X)$ is open, where $f(X) \subseteq Y $ has the induced topology. \end{enumerate} \textbf{Note:} This proves that the corestriction $f\colon X \to f(X)$ is a homeomorphism. In this case, $f$ is said to be an imbedding of $X$ into $Y$. \end{problem} \begin{problem} Let $X$ be a topological space and consider $X \times X$ with the product topology. Prove that $X$ is Hausdorff if and only if the \emph{diagonal} $\Delta =\{(x,y) \in X\times X \mid x=y\} $ is closed in $X\times X$. \end{problem} \end{document}