\documentclass[11pt]{scrartcl} \usepackage[headheight=1pt, includeheadfoot, headsep=.7cm, top=1.5cm, bottom=1.3cm, left=2cm, right=2cm]{geometry} \usepackage{mathtools} \usepackage{amsmath,amsthm, amscd, amssymb, amsfonts} \usepackage[english]{babel} \usepackage{fancyhdr} \usepackage{enumitem}\setlist{itemsep=0.5em} \usepackage{multicol} \usepackage{multienum} \usepackage{euler} \usepackage[OT1]{eulervm} \renewcommand{\rmdefault}{pplx} \usepackage{mathabx} %% header, footer definitions \pagestyle{fancy} \fancyhead[L]{Math 441} \fancyhead[C]{Homework 2} \fancyhead[R]{Due on July 3} %% environments % theorem style \newtheorem{theorem}{Theorem} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{claim}[theorem]{Claim} \newtheorem{defn}[theorem]{Definition} % definition style \theoremstyle{definition} \newtheorem{problem}{Problem} % custom solution environment \newenvironment{solution}{\noindent\textbf{Solution.}}{\qed} %% custom commands \newcommand*{\R}{\mathbb{R}} % real numbers \newcommand*{\C}{\mathbb{C}} % complex numbers \newcommand*{\Q}{\mathbb{Q}} % rational numbers \newcommand*{\Z}{\mathbb{Z}} % integers \newcommand*{\N}{\mathbb{N}} % natural numbers \newcommand*{\abs}[1]{\lvert #1\rvert} % absolute values, cardinality % operators \DeclareMathOperator*{\E}{\mathbb{E}} % expectation \DeclareMathOperator*{\Var}{\mathbf{Var}} % variance \DeclareMathOperator*{\Span}{span} % span \DeclareMathOperator{\tr}{tr} % trace \DeclareMathOperator{\rank}{rank} % rank \DeclareMathOperator{\supp}{supp} % support \DeclareMathOperator{\diam}{diam} \begin{document} %\noindent Your name! \hfill The date %\vskip10pt \begin{problem} Let $X$ be a set. Assume $\mathcal B$ and $\mathcal B'$ are bases for respective topologies on $X$. Prove that $\mathcal{T}(\mathcal{B}')$ is finer than $\mathcal{T}(\mathcal{B})$ if and only if for each $B \in \mathcal{B}$ and each $x\in B$, there exists some $B' \in \mathcal{B}'$ such that $x\in B'\subseteq B$. \end{problem} \begin{problem} Consider on $\mathbb R$ the standard topology and the lower limit topology. Use the previous problem to decide which of these topologies is finer or coarser than the other. \end{problem} \begin{problem} Let $X$ be a set with more than one element. Prove that $\mathcal S=\{X\setminus \{x\} \mid x \in X\}$ is a subbasis for the cofinite topology on $X$. \end{problem} \begin{problem} Let $X$ and $Y$ be topological spaces with bases $\mathcal B$ and $\mathcal C$, respectively. Show that the collection \[\mathcal D=\{U \times V \subseteq X\times Y \mid U\in \mathcal B, V \in \mathcal C\}\] is a basis for the product topology on $X \times Y$. \noindent \emph{Hint:} Lemma 13.2 from Munkres. \end{problem} \begin{problem} Endow $\{0,1\}$ with the discrete topology. Let $\Lambda$ be a nonempty set. Prove that $ \prod_{i \in \Lambda} \{0,1\}$ (endowed with the product topology) is discrete if and only if $\Lambda$ is finite. \end{problem} \begin{problem} Give a proof for Theorem 19.3 in Munkres. \end{problem} \end{document}